Google Scholar Link
[1] S. Kumar, A. Linda, Y. Shadangi, V. Jindal, Influence of micro-segregation on the microstructure, and microhardness of MoNbTaxTi(1-x)W refractory high entropy alloys: Experimental and DFT approach, Intermetallics. 164 (2024) 108080. https://doi.org/10.1016/j.intermet.2023.108080.
[2] S. Kumar, A.K. Thakur, V. Jindal, K. Muralidharan, A Neural Network Driven Approach for Characterizing the Interplay Between Short Range Ordering and Enthalpy of Mixing of Binary Subsystems in the NbTiVZr High Entropy Alloy, J. Phase Equilibria Diffus. (2023). https://doi.org/10.1007/s11669-023-01055-x.
[3] S. Kumar, V. Jindal, Modeling Short-Range Ordering in Binary BCC Ti-X (X = Nb, V, Zr) Alloys using CE-CVM, J. Phase Equilibria Diffus. 43 (2022) 511–526. https://doi.org/10.1007/s11669-022-00989-y.
[4] A. Ranjan, V. Jindal, R. Tyagi, Effect of Load on Tribological Properties of Ti–TiB–Fe Composites Processed via Spark Plasma Sintering (SPS), Trans. Indian Inst. Met. 75 (2022) 2847–2856. https://doi.org/10.1007/s12666-022-02651-0.
[5] S. Kumar, V. Jindal, First-principles calculations and thermodynamic assessment of the Nb–V system using CE-CVM, Calphad. 78 (2022) 102439. https://doi.org/10.1016/j.calphad.2022.102439.
[6] A. Ranjan, R. Tyagi, V. Jindal, Reciprocating Wear of Ti-TiB In Situ Composites Synthesized via Vacuum Arc Melting, J. Mater. Eng. Perform. 31 (2022) 9985–9996. https://doi.org/10.1007/s11665-022-07002-0.
[7] S. Kumar, V. Jindal, Thermodynamic Re-assessment of the Nb-Zr System Using the CE–CVM Model for Solid Solution Phases, J. Phase Equilibria Diffus. 43 (2022) 277–286. https://doi.org/10.1007/s11669-022-00959-4.
[8] R.P. Gorrey, V. Jindal, B.N. Sarma, S. Lele, Thermodynamics of Binary bcc and fcc Phases for Exclusive Second-Neighbour Pair Interactions Using Cluster Variation Method: Analytical Solutions, Trans. Indian Inst. Met. 75 (2022) 1365–1381. https://doi.org/10.1007/s12666-021-02469-2.
[9] A.K. Thakur, R.P. Gorrey, V. Jindal, K. Muralidharan, A data-driven approach to approximate the correlation functions in cluster variation method, Model. Simul. Mater. Sci. Eng. 30 (2022) 015001. https://doi.org/10.1088/1361-651X/ac3a16.
[10] N. Joshi, M.K. Dash, C. Upadhyay, V. Jindal, P.K. Panda, M. Shukla, Physico-chemical characterization of kajjali, black sulphide of mercury, with respect to the role of sulfur in its formation and structure, J. Ayurveda Integr. Med. 12 (2021) 590–600. https://doi.org/10.1016/j.jaim.2021.05.006.
[11] R.P. Gorrey, V. Jindal, B.N. Sarma, S. Lele, Modification of Cluster Variation Method Entropy Functional for Binary fcc Phases using Tetrahedron Approximation, Trans. Indian Inst. Met. 74 (2021) 129–136. https://doi.org/10.1007/s12666-020-02119-z.
[12] R.P. Gorrey, V. Jindal, B.N. Sarma, S. Lele, Polynomial functions for configurational correlation functions in Gibbs energies of solid solutions using cluster variation method, Comput. Mater. Sci. 186 (2021) 109746. https://doi.org/10.1016/j.commatsci.2020.109746.
[13] A.K. Thakur, V.K. Pandey, V. Jindal, Calculation of Existence Domains and Optimized Phase Diagram for the Nb-Ti Binary Alloy System Using Computational Methods, J. Phase Equilibria Diffus. 41 (2020) 846–858. https://doi.org/10.1007/s11669-020-00843-z.
[14] A. Ranjan, R. Tyagi, V. Jindal, K.S.R. Chandran, Investigation on Wear Characteristics of TiBFe Composites Containing 10 at.% Boron and 10-30 at.% Iron, J. Mater. Eng. Perform. 29 (2020) 6333–6342. https://doi.org/10.1007/s11665-020-05130-z.
[15] R.P. Gorrey, V. Jindal, B.N. Sarma, S. Lele, Analytical solutions for the correlation functions of perfectly ordered binary phases based on bcc, fcc and cph structures using cluster variation method, Calphad. 71 (2020) 101773. https://doi.org/10.1016/j.calphad.2020.101773.
[16] J. Du, V. Jindal, A.P. Sanders, K.S. Ravi Chandran, CALPHAD-guided alloy design and processing for improved strength and toughness in Titanium Boride (TiB) ceramic alloy containing a ductile phase, Acta Mater. 171 (2019) 18–30. https://doi.org/10.1016/j.actamat.2019.03.040.
[17] V. Jindal, A. Sarda, A. Degnah, K.S. Ravi Chandran, Effect of iron & boron content on the Spark Plasma Sintering of Ti-B-Fe alloys, Adv. Powder Technol. 30 (2019) 423–427. https://doi.org/10.1016/j.apt.2018.11.021.
[18] J. Akram, P.R. Kalvala, V. Jindal, M. Misra, Evaluating location specific strain rates, temperatures, and accumulated strains in friction welds through microstructure modeling, Def. Technol. 14 (2018) 83–92. https://doi.org/10.1016/j.dt.2017.11.002.
[19] J. Du, A.P. Sanders, V. Jindal, K.S.R. Chandran, Rapid in situ formation and densification of titanium boride (TiB) nano-ceramic via transient liquid phase in electric field activated sintering, Scr. Mater. 123 (2016) 95–99. https://doi.org/10.1016/j.scriptamat.2016.06.010.
[20] V. Jindal, P.K.P. Rupa, G.K. Mandal, V.C. Srivastava, Effect of High-Temperature Severe Plastic Deformation on Microstructure and Mechanical Properties of IF Steel, J. Mater. Eng. Perform. 23 (2014) 1954–1958. https://doi.org/10.1007/s11665-014-0977-9.
[21] V. Jindal, B. Nageswara Sarma, S. Lele, An improved CVM entropy functional for binary fcc alloys, Comput. Mater. Sci. 84 (2014) 129–133. https://doi.org/10.1016/j.commatsci.2013.11.062.
[22] V. Jindal, B.N. Sarma, S. Lele, An improvement of cluster variation method entropy functional for bcc alloys, Calphad. 43 (2013) 48–51. https://doi.org/10.1016/j.calphad.2013.10.004.
[23] V. Jindal, B.N. Sarma, S. Lele, A thermodynamic assessment of the Cr–Mo system using CE-CVM, Calphad. 43 (2013) 80–85. https://doi.org/10.1016/j.calphad.2013.10.003.
[24] V.C. Srivastava, T. Singh, S. Ghosh Chowdhury, V. Jindal, S.G. Chowdhury, Microstructural Characteristics of Accumulative Roll-Bonded Ni-Al-Based Metal-Intermetallic Laminate Composite, J. Mater. Eng. Perform. 21 (2012) 1912–1918. https://doi.org/10.1007/s11665-011-0114-y.
[25] V. Jindal, V.C. Srivastava, V. Uhlenwinkel, On the role of liquid phase stability and GFA parameters, J. Non. Cryst. Solids. 355 (2009) 1552–1555. https://doi.org/10.1016/j.jnoncrysol.2009.05.049.
[26] V.C.C. Srivastava, V. Jindal, V. Uhlenwinkel, K. Bauckhage, Hot-deformation behaviour of spray-formed 2014 Al+SiCp metal matrix composites, Mater. Sci. Eng. a-Structural Mater. Prop. Microstruct. Process. 477 (2008) 86–95. https://doi.org/10.1016/j.msea.2007.06.086.
[27] V. Jindal, V.C.C. Srivastava, Growth of intermetallic layer at roll bonded IF-steel/aluminum interface, J. Mater. Process. Technol. 195 (2008) 88–93. https://doi.org/10.1016/j.jmatprotec.2007.04.118.
[28] V. Jindal, V.C. Srivastava, R.N. Ghosh, Development of IF steel–Al multilayer composite by repetitive roll bonding and annealing process, Mater. Sci. Technol. 24 (2008) 798–802. https://doi.org/10.1179/174328406X148688.
[29] V. Rajinikanth, V. Jindal, V.G. Akkimardi, M. Ghosh, K. Venkateswarlu, Transmission electron microscopy studies on the effect of strain on Al and Al-1% Sc alloy, Scr. Mater. 57 (2007) 425–428. https://doi.org/10.1016/j.scriptamat.2007.04.038.
[30] V. Jindal, P.K. De, K. Venkateswarlu, Effect of Al3SC precipitates on the work hardening behavior of aluminum-scandium alloys, Mater. Lett. 60 (2006) 3373–3375. https://doi.org/10.1016/j.matlet.2006.03.017.
[31] V. Jindal, V.C. Srivastava, A. Das, R.N. Ghosh, Reactive diffusion in the roll bonded iron–aluminum system, Mater. Lett. 60 (2006) 1758–1761. https://doi.org/10.1016/j.matlet.2005.12.013.